103 research outputs found

    Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation

    Get PDF
    Background: Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses. Methodology/Principal Findings: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning. Conclusions: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo

    Sequential stereopsis using high-pass spatial frequency filtered textures

    Get PDF
    Enright [(1995). Perception, 24 (suppl.), 32–33; (1996). Vision Research, 36, 307–312] described a simple piece of equipment for demonstrating a perceptual mechanism he called sequential stereopsis. The equipment requires an observer to set two textured targets seen behind a pair of small viewing ports to appear equi-distant. The principle upon which the apparatus depends is the use of textures whose elements cannot be resolved in peripheral vision at the eccentricity determined by the target separation. Enright used a fine sandpaper for this purpose. We have conducted two similar experiments using high bandpass filtered textures which eliminate any possibility that the low spatial frequency content of sandpaper textures could play a role. Our results corroborate Enright's general conclusions on sequential stereopsis, while at the same time showing that high-pass textures do not give wholly similar results to sandpaper

    Cerebellar Motor Learning: When Is Cortical Plasticity Not Enough?

    Get PDF
    Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo–ocular reflex (VOR) have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This β€œcortex-first” learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed β€œbrainstem-first” mechanism that operates when ocular tracking mechanisms are effective. These results (i) describe a process whereby information originally learnt in one area of the brain (cerebellar cortex) can be transferred and expressed in another (brainstem), and (ii) indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay

    Recurrent cerebellar architecture solves the motor-error problem

    Get PDF
    Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex

    Sensory Prediction or Motor Control? Application of Marr–Albus Type Models of Cerebellar Function to Classical Conditioning

    Get PDF
    Marr–Albus adaptive filter models of the cerebellum have been applied successfully to a range of sensory and motor control problems. Here we analyze their properties when applied to classical conditioning of the nictitating membrane response in rabbits. We consider a system-level model of eyeblink conditioning based on the anatomy of the eyeblink circuitry, comprising an adaptive filter model of the cerebellum, a comparator model of the inferior olive and a linear dynamic model of the nictitating membrane plant. To our knowledge, this is the first model that explicitly includes all these principal components, in particular the motor plant that is vital for shaping and timing the behavioral response. Model assumptions and parameters were systematically investigated to disambiguate basic computational capacities of the model from features requiring tuning of properties and parameter values. Without such tuning, the model robustly reproduced a range of behaviors related to sensory prediction, by displaying appropriate trial-level associative learning effects for both single and multiple stimuli, including blocking and conditioned inhibition. In contrast, successful reproduction of the real-time motor behavior depended on appropriate specification of the plant, cerebellum and comparator models. Although some of these properties appear consistent with the system biology, fundamental questions remain about how the biological parameters are chosen if the cerebellar microcircuit applies a common computation to many distinct behavioral tasks. It is possible that the response profiles in classical conditioning of the eyeblink depend upon operant contingencies that have previously prevailed, for example in naturally occurring avoidance movements

    Visual-tactile sensory map calibration of a biomimetic whiskered robot

    Get PDF
    Β© 2016 IEEE. We present an adaptive filter model of cerebellar function applied to the calibration of a tactile sensory map to improve the accuracy of directed movements of a robotic manipulator. This is demonstrated using a platform called Bellabot that incorporates an array of biomimetic tactile whiskers, actuated using electro-active polymer artificial muscles, a camera to provide visual error feedback, and a standard industrial robotic manipulator. The algorithm learns to accommodate imperfections in the sensory map that may be as a result of poor manufacturing tolerances or damage to the sensory array. Such an ability is an important pre-requisite for robust tactile robotic systems operating in the real-world for extended periods of time. In this work the sensory maps have been purposely distorted in order to evaluate the performance of the algorithm

    Biohybrid control of general linear systems using the adaptive filter model of cerebellum

    Get PDF
    Β© 2015 Wilson, Assaf, Pearson, Rossiter, Dean, Anderson and Porrill. The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks

    Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomerbased artificial muscle

    Get PDF
    Β© 2016 The Author(s) Published by the Royal Society. All rights reserved. Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training

    An internal model architecture for novelty detection: Implications for cerebellar and collicular roles in sensory processing

    Get PDF
    The cerebellum is thought to implement internal models for sensory prediction, but details of the underlying circuitry are currently obscure. We therefore investigated a specific example of internal-model based sensory prediction, namely detection of whisker contacts during whisking. Inputs from the vibrissae in rats can be affected by signals generated by whisker movement, a phenomenon also observable in whisking robots. Robot novelty-detection can be improved by adaptive noise-cancellation, in which an adaptive filter learns a forward model of the whisker plant that allows the sensory effects of whisking to be predicted and thus subtracted from the noisy sensory input. However, the forward model only uses information from an efference copy of the whisking commands. Here we show that the addition of sensory information from the whiskers allows the adaptive filter to learn a more complex internal model that performs more robustly than the forward model, particularly when the whisking-induced interference has a periodic structure. We then propose a neural equivalent of the circuitry required for adaptive novelty-detection in the robot, in which the role of the adaptive filter is carried out by the cerebellum, with the comparison of its output (an estimate of the self-induced interference) and the original vibrissal signal occurring in the superior colliculus, a structure noted for its central role in novelty detection. This proposal makes a specific prediction concerning the whisker-related functions of a region in cerebellar cortical zone A2 that in rats receives climbing fibre input from the superior colliculus (via the inferior olive). This region has not been observed in non-whisking animals such as cats and primates, and its functional role in vibrissal processing has hitherto remained mysterious. Further investigation of this system may throw light on how cerebellar-based internal models could be used in broader sensory, motor and cognitive contexts. Β© 2012 Anderson et al
    • …
    corecore